Inner approximations of completely positive reformulations of mixed binary quadratic programs: a unified analysis
نویسنده
چکیده
Every quadratic programming problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely positive matrices on instances of completely positive optimization problems that arise from the reformulation of mixed binary quadratic programming problems. We provide a characterization of the feasibility of such an inner approximation as well as the optimal value of a feasible inner approximation. For polyhedral inner approximations, our characterization implies that computing an optimal solution of the corresponding inner approximation reduces to an optimization problem over a finite set. Our characterization yields, as a byproduct, an upper bound on the gap between the optimal value of an inner approximation and that of the original instance. We discuss the implications of this error bound for standard and box-constrained quadratic programs. ∗This work was supported in part by TÜBİTAK (The Scientific and Technological Research Council of Turkey) Grant 112M870. †Department of Industrial Engineering, Koç University, 34450 Sarıyer, Istanbul, Turkey ([email protected]).
منابع مشابه
Inner Approximations of Completely Positive Reformulations of Mixed Binary Quadratic Optimization Problems: A Unified Analysis∗
August 24, 2015 Abstract Every quadratic optimization problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely posit...
متن کاملOn Reformulations of Nonconvex Quadratic Programs over Convex Cones by Set-semidefinite Constraints
The well-known result stating that any non-convex quadratic problem over the nonnegative orthant with some additional linear and binary constraints can be rewritten as linear problem over the cone of completely positive matrices (Burer, 2009) is generalized by replacing the nonnegative orthant with an arbitrary closed convex cone. This set-semidefinite representation result implies new semidefi...
متن کاملOn the Value of Binary Expansions for General Mixed-Integer Linear Programs
We study the use of binary variables in reformulating general mixed-integer linear programs. We show that binary reformulations result in problems for which almost all the binary variables replacing a general integer variable need to be explored during branching. We also give computational results on the performance of such reformulations in solving the mixed-integer programs, which support our...
متن کاملLinear Reformulations of Integer Quadratic Programs
Let (QP ) be an integer quadratic program that consists in minimizing a quadratic function subject to linear constraints. In this paper, we present several linearizations of (QP ). Many linearization methods for the quadratic 0-1 programs are known. A natural approach when considering (QP ) is to reformulate it into a quadratic 0-1 program. However, this method, that we denote BBL (Binary Binar...
متن کاملComplete mixed integer linear programming formulations for modularity density based clustering
Modularity density maximization is a clustering method that improves some issues of the commonly-used modularity maximization approach. Recently, some Mixed-Integer Linear Programming (MILP) reformulations have been proposed in the literature for the modularity density maximization problem, but they require as input the solution of a set of auxiliary binary Non-Linear Programs (NLPs). These can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Methods and Software
دوره 32 شماره
صفحات -
تاریخ انتشار 2017